Hiding your .NET -
COMPIlus ETWEnabled

vx-underground collection //_xpn

https://twitter.com/_xpn_

The process of disabling ETW is something that | first looked at back in March after trying to
figure out just how some defenders were detecting in-memory Assembly loads
(https://blog.xpnsec.com/hiding-your-dotnet-etw/). There have since been several other posts
with clever and improved methods of bypassing this kind of detection from some awesome
researchers including Cneeliz, BatSec and modexp. Each method relies on manipulating the
ETW subsytem itself, from intercepting and manipulating calls to the usermode function
EtwEventWrite or the kernel function NtTraceEvent, and even parsing and manipulating the
ETW registration table to avoid any code patching.

It turns out however that there is also a further method of disabling ETW in .NET, strangely
exposed by setting an environment variable of COMPIlus_ ETWEnabled=0:

Adam Chester @ xpn_- Jun 4
Want to stop ETW from giving up your loaded .NET assemblies to that

pesky EDR, but can't be bothered patching memory? Just pass
COMPlus_ETWEnabled=0 as an environment variable during your

CreateProcess call &

-' Command F'r|_;'|'||:|{ p.‘Y..'.'l,-."..'lulll

\xpn=set COMPLus_ETWEnabled=0

C:\Users\xpn=powershell.exe

Windows Power 1

Copyright (C) Microsoft Corporation. All rights reserved.

EX powarshell.exe (7156) Properties

General Statistics Performance Threads Teken Modules Mermery Emdronment Handles
MNET assemiblees MET performance GRU Disk and Metwork Comment

Structune 10 Flags Path

Now since posting this method | have been asked quite a few questions, mostly focusing on
how this particular setting was found as well as how it works. So in this short post | wanted to
cover some of those details for anyone interested in peeking under the hood.

Before we begin to look at this however it is worth commenting on the fact that ETW was never
meant to serve as a security control, which helps to explain some of the things shown in this
post. Its primary purpose is as a debugging tool, but as attackers have evolved their payload
execution techniques, it seems that some defenders turned to the power of ETW as a way of

http://blog.xpnsec.com/hiding-your-dotnet-etw/
https://github.com/outflanknl/TamperETW
https://github.com/outflanknl/TamperETW
https://blog.dylan.codes/evading-sysmon-and-windows-event-logging/
https://blog.dylan.codes/evading-sysmon-and-windows-event-logging/
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
https://twitter.com/_xpn_/status/1268712093928378368

surfacing information on events like .NET Assembly loads. It is because of ETW's original
purpose that we come across things like COMPIlus_ETWEnabled which might seem like a
toggle for security auditing... when in fact it's just a simple way to turn off some debugging
functionality.

So what is this COMPIlus_ prefix thing?

COMPIus_ prefixed settings provide developers with a number of configuration options which
can be set at runtime with various levels of impact on the CLR, from loading alternative JITters,
to tweaking performance and even dumping the IL of a method. Being provided via environment
variables or registry values, many of these settings are undocumented, with one of the best
resources for understanding each being the CoreCLR source, specifically clrconfigvalues.h.

Now if you take a quick look at this file you might notice that COMPIlus_ETWEnabled isn't
present. It actually turns out that this was removed from the CoreCLR in an earlier commit here
on 31 May 2019.

As with many undocumented features, these settings provide some interesting functionality for
us attackers. It's worth pointing out however that unsurprisingly these settings don't always
follow the COMPIus_ prefix naming as we can see from this FullDisclosure post from 2007
which used a setting named COR_PROFILER to achieve a UAC bypass in MMC.exe.

So now that we know just why these settings exist and how to list them, let's look at how this
particular one was found.

Finding COMPIlus_ETWEnabled

Although there are a lot of settings shown in the CoreCLR source, many do not apply to the
standard .NET Framework we're all familiar with.

To determine which COMPIlus__ settings apply to the .NET Framework, we can simply hunt
within clr.dll for any references, such as the COMPIlus_AltJit setting documented in
clrconfigvalues.h.

Removing the prefix and performing a simple string search in IDA is enough to give us an
indication that AltJit is likely present within clir.dll:

https://github.com/dotnet/coreclr/blob/master/src/inc/clrconfigvalues.h
https://github.com/dotnet/coreclr/blob/master/src/inc/clrconfigvalues.h
https://github.com/dotnet/coreclr/commit/b8d5b7b760f64d39e00554189ea0e5c66ed6bd62
https://github.com/dotnet/coreclr/commit/b8d5b7b760f64d39e00554189ea0e5c66ed6bd62
https://seclists.org/fulldisclosure/2017/Jul/11
https://seclists.org/fulldisclosure/2017/Jul/11

Address Length Type String

|E| .text:1016D7... 0000000E C (16 bits) - UTF-16LE AltJit
|E| .text:101EES... 00000016 C (16 bits) - UTF-16LE AltJitName
' |E| .text:101F8F48 00000016 C (16 bits) - UTF-16LE AltJitNgen

Following references to this string leads us to a method of CLRConfig::GetConfigValue which is
passed our setting name as a parameter to retrieve the value:

vy

[Wea T
loc_1016D687:

mov ecx, esi

call ?SetCpulnfo@EEJitManager@@AAEXXZ ; EEJitManager::SetCpulnfo(void)

mov [esi+6Ch], edi

lea edx, [ebp+var_10]

mov ecx, offset PEXTERNAL_JitName@CLRConfig@@2UConfigStringInfo@l@B ; COMPlus_JitName

mov [ebp+var_18], edi

mov ?g_JlitLoadData@@3UJIT_LOAD_DATA@@A, 1F4h ; JIT_LOAD_DATA g JitlLoadData

mov [ebp+var_1@], edi

call ?GetConfigValue@CLRConfig@@SGIABUConfigStringInfo@l@PAPAG@Z ; CLRConfig::GetConfigValue{CLRConfig::ConfigStringInfo const &,ushort * *)
test eax, eax

is loc_102E6C89

Taking this and searching for overloads gives us several other methods which are also used to
access similar configuration settings during runtime:

e

Function name Segment
E CLRConfig::getQuirkEnabledAndValueFromWinDB(ushort const *,int *,_CPT_QUIRK_DA... .text
|=_;i CLRConfig::GetConfigValue(CLRConfig::ConfigStringInfo const &,ushort * *) text
|=Ji CLRConfig::GetConfigValue(CLRConfig::ConfigStringInfo const &) text
L—Ji CLRConfig::GetConfigValue(CLRConfig: :ConfigDWORDInfo const &,bool,bool *) text
|=_;|"'_ CLRConfig::GetConfigValue(CLRConfig::ConfigDWORDInfo const &) text
| f | CLRConfig::GetConfigLevel(CLRConfig::LookupOptions) text

And as Microsoft provide the appropriate PDB file for the CLR, walking through each of these
methods and taking a look at the Xrefs is enough to indicate which references are likely to be
interesting, for example:

52 xrefs to CLRConfig:GetConfigValue(CLRConfig:ConfigDWORDInfo con... O X
Direct T Address e
E D... p EEConfig::sync(void)+8A5
E D... p EEConfig::sync(void)+8C0
E D... p EEConfig::sync(void)+8FA
E D... p EEConfig::sync(void)+913
E D... p EEConfig::sync(void)+92C
_@ D... p EEConfig::sync(void)+A3
@ D.. p EEConfig::sync(void)+B9
5= D... p EEConfig::sync(void)+CF
. p ETW::CEtwTracer::Register(void)+1803D8
|L . p ETW::CEtwTracer::Register(void)+62
Finally, following the reference and looking at the arguments passed to
CLRConfig::GetConfigValue is enough to give you the setting used:
1:; Z;x,dgehpﬁyar7l71] |
Z«:éh ;: offset EXTERNAE VntaAnd/:SSveEn:«Enabled@canonhg@@ZUConhgnwuﬁDInfn@i@s i CLRC fig ConfigDWORDInfo const CLRConfi & r”rv \L_VistaAndAboveETWEnabled
:2i eiff:?QWImCﬂR, public: static struct CLRConfig: ConflngORDInfo const CLRConflg EXTERNAL _VistaAndAboveETWEnabled
L loc 1032¢334 . "REXTERNAL_VistaAndAboveETWEnabled@CLRConfig@@2UConfigDWORDINfo@1@B dd offset aEtwenabled

; DATA XREF: ETW::CEtwTracer::Register(void)+5DTo

o >
; "ETWEnabled”
loc_101ABFEC: 3 OIUE PIIT T TTT

What does COMPIlus_ETWEnabled do exactly?

Now that we know that this setting exists in the .NET Framework, how does this disable event
tracing? Well let's look at a CFG in IDA which should show you immediately why this works to
disable ETW:

=]
lea eax, [ebp+var_121]
xor dl1, dl
push eax
mov ecx, offset ?EXTERNAL_VistaAndAboveETWEnabled@CLRConfig@@2UConfigDWORDINfo@1@8 ; CLRConfig::ConfigDWORDINfo const CLRConfig::EXTERNAL_VistaAndAboveETWEnabled|
call 2GetConfigValue@LRConf ig@@SGKABUCONFigDWORDINnfo@1@_NPA_N@Z ; CLRConfig::GetConfigValue(CLRConfig: :ConfigDWORDInfo const &,bool,bool *)
test eax, eax
jz _RedPill_Jump
™
_ iy (M
i)
|_.BluePill_Jump: ‘ ‘
lpush offset _Microsoft _Windows_DotNETRuntimeHandle
lpush offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_PROVIDER Context ‘
mov ecx, offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_PROVIDER |
lcall _McGenEventRegister@16 ; McGenEventRegister(x,x,x,x)
lpush offset _Microsoft_Windows_DotNET! 4 dle
lpush offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_PRIVATE_PROVIDER_Context| ‘
mov ecx, offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_PRIVATE_PROVIDER |
lcall _McGenEventRegister@16 ; McGenEventRegister(x,x,x,x)
lpush offset _Microsoft_Windows_DotNETRuntimeRundownHandle ‘
push offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_RUNDOWN_PROVIDER_Context ‘
mov ecx, offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_RUNDOWN_PROVIDER
lcall _McGenEventRegister@16 ; McGenEventRegister(x,x,x,x) 1 l
lpush offset _Microsoft_Windows_DOtNETI essHandle (=
lpush offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_STRESS_PROVIDER_Context
mov ecx, offset _MICROSOFT_WINDOWS_DOTNETRUNTIME_STRESS_PROVIDER
lcall _McGenEventRegister@16 ; McGenEventRegister(x,x,x,x)
mov eax, _Microsoft_Windows DotNETRuntimeHandle
mov _MICROSOFT_WINDOWS_DOTNETRUNTIME_PROVIDER_Context, eax
mov eax, dword_1874D16C
mov dword_1074212C, eax
mov eax, _Microsoft_Windows_DotNETRuntimePrivateHandle
imov _MICROSOFT_WINDOWS_DOTNETRUNTIME_PRIVATE_PROVIDER Context, eax
mov eax, dword_1@7432CC
mov dword_1074325C, eax
mov eax, _Microsoft_Windows_DotNETRuntimeRundownHandle
mov _MICROSOFT_WINDOWS_DOTNETRUNTIME_RUNDOWN_PROVIDER_Context, eax
mov eax, dword_1874D11C
mov dword_1074BC24, eax
mov eax, _Microsoft_Windows_DotNETRuntimeStressHandle
mov _MICROSOFT_WINDOWS_DOTNETRUNTIME_STRESS_PROVIDER Context, eax
mov eax, dword_1074228C
mov dword_10742244, eax
xor eax, eax
o

loc_101ACOSE:

mov ecx, [ebp+var_4]

xor ecx, ebp

call @_security check_cookie@4 ; _ security check cookie(x)
mov esp, ebp

pop ebp

retn

?Register@CEtwTracer@ETWR@QAEIXZ endp

Here we can clearly see the 2 code paths which depend on the COMPlus_ ETWEnabled value
returned from CLRConfig::GetConfigValue. If this setting exists and returns a 0 value, the CLR
will jump past the block of ETW registrations shown in blue, where _McGenEventRegister is
simply a wrapper around the EventRegister API call.

Digging further by taking one of these provider GUID's, we see something familiar:

Wov ecx, offset MICROSOFT WINDOWS DOTNETRUNTIME PROVIDER I I

call Mc ister@16 ictant A i

push offset _Microsoft_windo| MICROSOFT_WINDOWS DOTNETRUNTIME_PROVIDER dd ©E13CeD23h, 4E12CCBCh, @CCD91B93h, @E427EE2Eh
h o off ICROSOF T_WI : 2

i :cxfe:f;:eikgzrznagoﬂ ; DATA XREF: ETW::CEtwTracer::Register(void)+791o

icall _McGenEventRegister@16 ; McGenEventRegister(x,x,x,x) | [[1 ‘

This is of course referencing the GUID {e13c0d23-ccbc-4e12-931b-d9cc2eee27e4} which we
used in our previous post when unhooking ETW and is documented by Microsoft as the CLR
ETW provider:

http://blog.xpnsec.com/hiding-your-dotnet-etw/
http://blog.xpnsec.com/hiding-your-dotnet-etw/
https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-providers
https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-providers

The Runtime Provider

The runtime provider is the main CLR ETW provider.

The CLR runtime provider GUID is e13c0d23-ccbc-4e12-931b-d9cc2eeel7e4.

So hopefully this sheds some light on this strange but cool setting... Essentially, toggling it just
forces the CLR to skip past the point of registering to the .NET ETW providers which is required
to surface events.

Now for defending against this, I'll defer to Roberto Rodriguez's awesome set of notes which
detail a number of detections and mitigations which can be used to detect and protect an
environment... check them out here.

Update 07/06/2020 - | have created a quick environment variable spoofing POC which uses a
similar practice to Argument Spoofing to mask environment variables passed to a process on
launch. This can be found here and is designed to hide the COMPIus_ETWEnabled=0 variable
from CreateProcess:

e
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscore6

PS C:\Windows\System32>

PS C:\Windows\System32>
> |

General Statistics Performance Threads Token Modules Memory Environment Handles
NET assemblies NET perfermance GPU Comment
Structure 1D Flags Path

Unable to start the event tracing session: This operation returned because the timesut period expired.

EX powershell.exe (2740) Properties - [m] X
NET assemblies NET performance GPU Comment
General Statistics Performance Threads Token Modules Memory Environment Handles
Name : Value N
ALLUSERSPROFILE C:\ProgramData
APPDATA C:\Users\xpn\AppData|Roaming
CommonProgramFiles C:\Program Files\Common Files

CommonProgramFiles(x86) C:\Program Files (x86)\Common Files
CommonProgramW6432 C:\Program Files\Common Files
COMPLUS_NoGuiFromShim 1

COMPUTERNAME DESKTOP-1GBIRKQ
ComSpec C:\Windows\system32\cmd.exe
DriverData C:\Windows\System32\Drivers\DriverD...

ENABLE XAML DIAGNOST... 1
FPS_BROWSER APP_PRO... Internet Explorer

https://twitter.com/Cyb3rWard0g
https://twitter.com/Cyb3rWard0g
https://twitter.com/Cyb3rWard0g/status/1268925843105030144?s=20
https://twitter.com/Cyb3rWard0g/status/1268925843105030144?s=20
http://blog.xpnsec.com/how-to-argue-like-cobalt-strike/
http://blog.xpnsec.com/how-to-argue-like-cobalt-strike/
https://gist.github.com/xpn/64e5b6f7ad370c343e3ab7e9f9e22503
https://gist.github.com/xpn/64e5b6f7ad370c343e3ab7e9f9e22503

