
Hiding your .NET -
COMPlus_ETWEnabled

vx-underground collection //​_xpn_

https://twitter.com/_xpn_

The process of disabling ETW is something that I first looked at back in March after trying to
figure out just how some defenders were detecting in-memory Assembly loads
(​https://blog.xpnsec.com/hiding-your-dotnet-etw/​). There have since been several other posts
with clever and improved methods of bypassing this kind of detection from some awesome
researchers including​ ​Cneeliz​,​ ​BatSec​ and​ ​modexp​. Each method relies on manipulating the
ETW subsytem itself, from intercepting and manipulating calls to the usermode function
EtwEventWrite or the kernel function NtTraceEvent, and even parsing and manipulating the
ETW registration table to avoid any code patching.

It turns out however that there is also a further method of disabling ETW in .NET, strangely
exposed by setting an environment variable of COMPlus_ETWEnabled=0:

Now since posting this method I have been asked quite a few questions, mostly focusing on
how this particular setting was found as well as how it works. So in this short post I wanted to
cover some of those details for anyone interested in peeking under the hood.

Before we begin to look at this however it is worth commenting on the fact that ETW was never
meant to serve as a security control, which helps to explain some of the things shown in this
post. Its primary purpose is as a debugging tool, but as attackers have evolved their payload
execution techniques, it seems that some defenders turned to the power of ETW as a way of

http://blog.xpnsec.com/hiding-your-dotnet-etw/
https://github.com/outflanknl/TamperETW
https://github.com/outflanknl/TamperETW
https://blog.dylan.codes/evading-sysmon-and-windows-event-logging/
https://blog.dylan.codes/evading-sysmon-and-windows-event-logging/
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
https://modexp.wordpress.com/2020/04/08/red-teams-etw/
https://twitter.com/_xpn_/status/1268712093928378368

surfacing information on events like .NET Assembly loads. It is because of ETW's original
purpose that we come across things like COMPlus_ETWEnabled which might seem like a
toggle for security auditing... when in fact it's just a simple way to turn off some debugging
functionality.

So what is this COMPlus_ prefix thing?
COMPlus_ prefixed settings provide developers with a number of configuration options which
can be set at runtime with various levels of impact on the CLR, from loading alternative JITters,
to tweaking performance and even dumping the IL of a method. Being provided via environment
variables or registry values, many of these settings are undocumented, with one of the best
resources for understanding each being the CoreCLR source, specifically​ ​clrconfigvalues.h​.

Now if you take a quick look at this file you might notice that COMPlus_ETWEnabled isn't
present. It actually turns out that this was removed from the CoreCLR in an earlier commit​ ​here
on 31 May 2019.

As with many undocumented features, these settings provide some interesting functionality for
us attackers. It's worth pointing out however that unsurprisingly these settings don't always
follow the COMPlus_ prefix naming as we can see from​ ​this​ FullDisclosure post from 2007
which used a setting named COR_PROFILER to achieve a UAC bypass in MMC.exe.

So now that we know just why these settings exist and how to list them, let's look at how this
particular one was found.

Finding COMPlus_ETWEnabled
Although there are a lot of settings shown in the CoreCLR source, many do not apply to the
standard .NET Framework we're all familiar with.

To determine which COMPlus_ settings apply to the .NET Framework, we can simply hunt
within clr.dll for any references, such as the COMPlus_AltJit setting documented in
clrconfigvalues.h.

Removing the prefix and performing a simple string search in IDA is enough to give us an
indication that AltJit is likely present within clr.dll:

https://github.com/dotnet/coreclr/blob/master/src/inc/clrconfigvalues.h
https://github.com/dotnet/coreclr/blob/master/src/inc/clrconfigvalues.h
https://github.com/dotnet/coreclr/commit/b8d5b7b760f64d39e00554189ea0e5c66ed6bd62
https://github.com/dotnet/coreclr/commit/b8d5b7b760f64d39e00554189ea0e5c66ed6bd62
https://seclists.org/fulldisclosure/2017/Jul/11
https://seclists.org/fulldisclosure/2017/Jul/11

Following references to this string leads us to a method of CLRConfig::GetConfigValue which is
passed our setting name as a parameter to retrieve the value:

Taking this and searching for overloads gives us several other methods which are also used to
access similar configuration settings during runtime:

And as Microsoft provide the appropriate PDB file for the CLR, walking through each of these
methods and taking a look at the Xrefs is enough to indicate which references are likely to be
interesting, for example:

Finally, following the reference and looking at the arguments passed to
CLRConfig::GetConfigValue is enough to give you the setting used:

What does COMPlus_ETWEnabled do exactly?
Now that we know that this setting exists in the .NET Framework, how does this disable event
tracing? Well let's look at a CFG in IDA which should show you immediately why this works to
disable ETW:

Here we can clearly see the 2 code paths which depend on the COMPlus_ETWEnabled value
returned from CLRConfig::GetConfigValue. If this setting exists and returns a 0 value, the CLR
will jump past the block of ETW registrations shown in blue, where _McGenEventRegister is
simply a wrapper around the EventRegister API call.

Digging further by taking one of these provider GUID's, we see something familiar:

This is of course referencing the GUID {e13c0d23-ccbc-4e12-931b-d9cc2eee27e4} which we
used in our​ ​previous post​ when unhooking ETW and is​ ​documented​ by Microsoft as the CLR
ETW provider:

http://blog.xpnsec.com/hiding-your-dotnet-etw/
http://blog.xpnsec.com/hiding-your-dotnet-etw/
https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-providers
https://docs.microsoft.com/en-us/dotnet/framework/performance/clr-etw-providers

So hopefully this sheds some light on this strange but cool setting... Essentially, toggling it just
forces the CLR to skip past the point of registering to the .NET ETW providers which is required
to surface events.

Now for defending against this, I'll defer to​ ​Roberto Rodriguez​'s awesome set of notes which
detail a number of detections and mitigations which can be used to detect and protect an
environment... check them out​ ​here​.

Update 07/06/2020​ - I have created a quick environment variable spoofing POC which uses a
similar practice to​ ​Argument Spoofing​ to mask environment variables passed to a process on
launch. This can be found​ ​here​ and is designed to hide the COMPlus_ETWEnabled=0 variable
from CreateProcess:

https://twitter.com/Cyb3rWard0g
https://twitter.com/Cyb3rWard0g
https://twitter.com/Cyb3rWard0g/status/1268925843105030144?s=20
https://twitter.com/Cyb3rWard0g/status/1268925843105030144?s=20
http://blog.xpnsec.com/how-to-argue-like-cobalt-strike/
http://blog.xpnsec.com/how-to-argue-like-cobalt-strike/
https://gist.github.com/xpn/64e5b6f7ad370c343e3ab7e9f9e22503
https://gist.github.com/xpn/64e5b6f7ad370c343e3ab7e9f9e22503

